10 research outputs found

    Monte Carlo for Protein Structures

    Get PDF
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. In the previous chapter "Molecular Dynamics" we have considered protein simulations from a dynamical point of view, using Newton's laws. In the current Chapter, we first take a step back and return to the bare minimum needed to simulate proteins, and show that proteins may be simulated in a more simple fashion, using the partition function directly. This means we do not have to calculate explicit forces, velocities, moments and do not even consider time explicitly. Instead, we will rely on the fact that for most systems we will want to simulate, the system is in a dynamic equilibrium; and that we want to find the most stable states in such systems by determining the relative stabilities between those states

    Monte Carlo for Protein Structures

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. In the previous chapter "Molecular Dynamics" we have considered protein simulations from a dynamical point of view, using Newton's laws. In the current Chapter, we first take a step back and return to the bare minimum needed to simulate proteins, and show that proteins may be simulated in a more simple fashion, using the partition function directly. This means we do not have to calculate explicit forces, velocities, moments and do not even consider time explicitly. Instead, we will rely on the fact that for most systems we will want to simulate, the system is in a dynamic equilibrium; and that we want to find the most stable states in such systems by determining the relative stabilities between those states.Comment: editorial responsability: Juami H. M. van Gils, K. Anton Feenstra, Sanne Abeln. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapter

    Thermodynamics of Protein Folding

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. In the previous chapter, "Introduction to Protein Folding", we introduced the concept of free energy and the protein folding landscape. Here, we provide a deeper, more formal underpinning of free energy in terms of the entropy and enthalpy; to this end, we will first need to better define the meaning of equilibrium, entropy and enthalpy. When we understand these concepts, we will come back for a more quantitative explanation of protein folding and dynamics. We will discuss the influence of temperature on the free energy landscape, and the difference between microstates and macrostates.Comment: editorial responsability: Juami H. M. van Gils, K. Anton Feenstra, Sanne Abeln. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapter

    Thermodynamics of Protein Folding

    Get PDF
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. In the previous chapter, "Introduction to Protein Folding", we introduced the concept of free energy and the protein folding landscape. Here, we provide a deeper, more formal underpinning of free energy in terms of the entropy and enthalpy; to this end, we will first need to better define the meaning of equilibrium, entropy and enthalpy. When we understand these concepts, we will come back for a more quantitative explanation of protein folding and dynamics. We will discuss the influence of temperature on the free energy landscape, and the difference between microstates and macrostates

    Introduction to Protein Folding

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. In this chapter we explore basic physical and chemical concepts required to understand protein folding. We introduce major (de)stabilising factors of folded protein structures such as the hydrophobic effect and backbone entropy. In addition, we consider different states along the folding pathway, as well as natively disordered proteins and aggregated protein states. In this chapter, an intuitive understanding is provided about the protein folding process, to prepare for the next chapter on the thermodynamics of protein folding. In particular, it is emphasized that protein folding is a stochastic process and that proteins unfold and refold in a dynamic equilibrium. The effect of temperature on the stability of the folded and unfolded states is also explained.Comment: editorial responsability: Juami H. M. van Gils, K. Anton Feenstra, Sanne Abeln. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapter

    Introduction to Protein Folding

    Get PDF
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. In this chapter we explore basic physical and chemical concepts required to understand protein folding. We introduce major (de)stabilising factors of folded protein structures such as the hydrophobic effect and backbone entropy. In addition, we consider different states along the folding pathway, as well as natively disordered proteins and aggregated protein states. In this chapter, an intuitive understanding is provided about the protein folding process, to prepare for the next chapter on the thermodynamics of protein folding. In particular, it is emphasized that protein folding is a stochastic process and that proteins unfold and refold in a dynamic equilibrium. The effect of temperature on the stability of the folded and unfolded states is also explained

    Molecular Dynamics

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. We know that many proteins have functional motions, and in Chapter "Structure Determination" we already introduced the famous example of the allosteric cooperative binding of oxygen to the haem group in hemoglobin. However, experimentally, such motions are hard to observe. Here, we will introduce MD simulations to investigate the dynamic behaviour of proteins. In a simulation the forces and interactions between particles are used to numerically derive the resulting three-dimensional movement of these particles over a certain time-scale. We will also highlight some applications, and will see how simulation results may be interpreted.Comment: editorial responsability: Halima Mouhib, Sanne Abeln, K. Anton Feenstra. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapter

    Molecular Dynamics

    Get PDF
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. We know that many proteins have functional motions, and in Chapter "Structure Determination" we already introduced the famous example of the allosteric cooperative binding of oxygen to the haem group in hemoglobin. However, experimentally, such motions are hard to observe. Here, we will introduce MD simulations to investigate the dynamic behaviour of proteins. In a simulation the forces and interactions between particles are used to numerically derive the resulting three-dimensional movement of these particles over a certain time-scale. We will also highlight some applications, and will see how simulation results may be interpreted

    Structural Property Prediction

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. Some structural properties of proteins that are closely linked to their function may be easier (or much faster) to predict from sequence than the complete tertiary structure; for example, secondary structure, surface accessibility, flexibility, disorder, interface regions or hydrophobic patches. Serving as building blocks for the native protein fold, these structural properties also contain important structural and functional information not apparent from the amino acid sequence. Here, we will first give an introduction into the application of machine learning for structural property prediction, and explain the concepts of cross-validation and benchmarking. Next, we will review various methods that incorporate knowledge of these concepts to predict those structural properties, such as secondary structure, surface accessibility, disorder and flexibility, and aggregation.Comment: editorial responsability: Juami H. M. van Gils, K. Anton Feenstra, Sanne Abeln. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapter

    Clusters of co-abundant proteins in the brain cortex associated with fronto-temporal lobar degeneration

    No full text
    Background: Frontotemporal lobar degeneration (FTLD) is characterized pathologically by neuronal and glial inclusions of hyperphosphorylated tau or by neuronal cytoplasmic inclusions of TDP43. This study aimed at deciphering the molecular mechanisms leading to these distinct pathological subtypes. Methods: To this end, we performed an unbiased mass spectrometry-based proteomic and systems-level analysis of the middle frontal gyrus cortices of FTLD-tau (n = 6), FTLD-TDP (n = 15), and control patients (n = 5). We validated these results in an independent patient cohort (total n = 24). Results: The middle frontal gyrus cortex proteome was most significantly altered in FTLD-tau compared to controls (294 differentially expressed proteins at FDR = 0.05). The proteomic modifications in FTLD-TDP were more heterogeneous (49 differentially expressed proteins at FDR = 0.1). Weighted co-expression network analysis revealed 17 modules of co-regulated proteins, 13 of which were dysregulated in FTLD-tau. These modules included proteins associated with oxidative phosphorylation, scavenger mechanisms, chromatin regulation, and clathrin-mediated transport in both the frontal and temporal cortex of FTLD-tau. The most strongly dysregulated subnetworks identified cyclin-dependent kinase 5 (CDK5) and polypyrimidine tract-binding protein 1 (PTBP1) as key players in the disease process. Dysregulation of 9 of these modules was confirmed in independent validation data sets of FLTD-tau and control temporal and frontal cortex (total n = 24). Dysregulated modules were primarily associated with changes in astrocyte and endothelial cell protein abundance levels, indicating pathological changes in FTD are not limited to neurons. Conclusions: Using this innovative workflow and zooming in on the most strongly dysregulated proteins of the identified modules, we were able to identify disease-associated mechanisms in FTLD-tau with high potential as biomarkers and/or therapeutic targets
    corecore